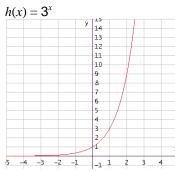
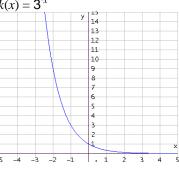
SOLUCIÓN A LOS EJERCICIOS PROPUESTOS DE LA UNIDAD 4


Ejercicios 4.1.1 página 292

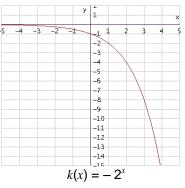
- 1) A los 10 días habrá 512000 y a los n días habrá $N(n) = 500(2^n)$ bacterias.
- **2)** \$85621.05 y la función es $V(t) = 145000(.9)^t$ donde t son los años.
- 3) En 20.47 trimestres
- 4) La opción b) ya que le pagarán \$10737418.24
- **5)** 10×102.4 cm


6)

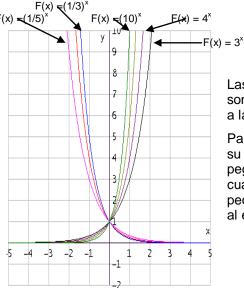
- 7) En 11 años: \$2093.57 y en 12 años \$2407.6
- 8) a) A los 5 días 4 personas, a los 10 días 20 personas y a los 20 días 388 personas. b) después de 35.79 días

Ejercicios 4.1.2 página 296


 $k(x) = 3^{-x}$



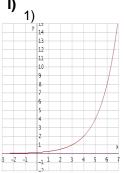
Si tienen comportamientos similares respectivamente.


Las funciones de la forma F(x) = a^x y $G(x) = a^{-x}$ son simétricas con respecto al eje Y, además tienen comportamientos similares a h(x) y k(x) siempre y cuando a > 1, a^x será creciente y a^{-x} será decreciente.

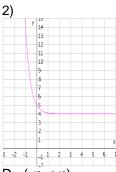
2)

Son diferentes, ya que p(x) es positiva y k(x) es negativa. Cuando x es más y más grande p(x)tiende a cero, mientras que k(x) tiende a $-\infty$.

Las funciones con a<1 son simétricas respecto a las funciones con *a*>1.

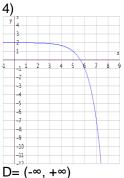

Para a cada ves mayor, gráfica se va pegando al eje Y, y cuando es más y más pequeña, se pega más al eje X.

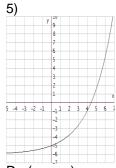
4)

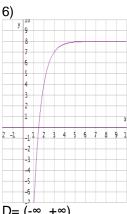

Las funciones con 0<a<1 son decrecientes

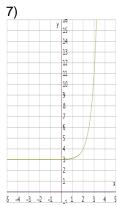
Las funciones con a>1 son crecientes

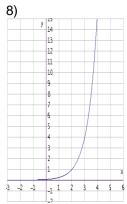
Ejercicio 4.1.3 página 301

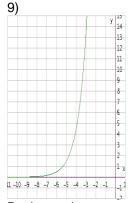

D= $(-\infty, +\infty)$ R= $(0, +\infty)$ A: y = 0No corta al eje X, al Y en $\frac{1}{8}$.

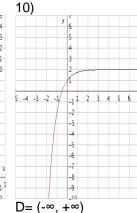

D= $(-\infty, +\infty)$ R= $(4, +\infty)$ A: y=4No corta al eje X, al Y en 5.


R= $(-4, +\infty)$ A: y=-4Corta al eje X en - 3.14, al Y en 621.


R= $(-\infty, +\infty)$ R= $(-\infty, 2)$ A: y=2Corta al eje X en 5.63, al Y en 1.99


D= $(-\infty, +\infty)$ R= $(-6, +\infty)$ A: y=-6Corta al eje X en 4.42, al Y en -5.


D= $(-\infty, +\infty)$ R= $(-\infty, 8)$ A: y= 8Corta al eje X en 1.5, al Y en -56


D= $(-\infty, +\infty)$ R= $(3, +\infty)$ A: y=3No corta al eje X, al Y en 3.02

D= $(-\infty, +\infty)$ R= $(0, +\infty)$ A: y = 0No corta al eje X, al Y en 0.06

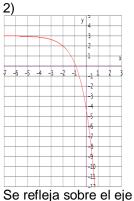
D= $(-\infty, +\infty)$ R= $(0, +\infty)$ A: y=0No corta al eje X, al Y en 364.5

D= $(-\infty, +\infty)$ R= $(-\infty, 2)$ A: y=2Corta al eje X en $-\frac{1}{2}$, al Y en 1

II) A)
$$f(x) = 3^x$$

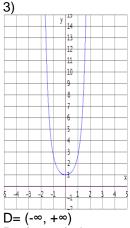
B)
$$f(x) = 2^{-x}$$

C)
$$f(x) = 5^{x+1} - 4$$


D)
$$f(x) = 2^{x-3}$$

E)
$$f(x) = (\frac{1}{4})^{(x-3)} + 5$$

Ejercicios 4.1.4 página 305

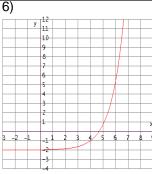


Crece al doble que e^x . D= $(-\infty, +\infty)$ R= $(0, +\infty)$ A: y = 0No corta al eje X, al Y en 2.

Se refleja sobre el eje X ya que el coefic. de e es negativo. D= $(-\infty, +\infty)$ R= $(-\infty, 3)$ A: y = 3 Corta al eje X en -0.9,

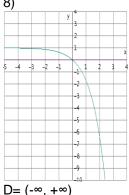
al Y en -4.38

D= $(-\infty, +\infty)$ R= $(1, +\infty)$ A: no No corta al eje X, al Y en 1.


354

D= $(-\infty, +\infty)$ R= $(5, +\infty)$ A: y=5No corta al eje X, al Y en 12.38 5) y | 4 2 2 5 -4 -3 -2 -1 1 2 3 4 5

Como el exponente de e es siempre negativo o cero, hay simetría con respecto al eje Y. D= $(-\infty, +\infty)$ R= (0, 1] A: y = 0. No


corta al eje X, al Y en 1

D= $(-\infty, +\infty)$ R= $(-2, +\infty)$ A: y = -2Corta al eje X en 4.69, al Y en -1.98

D= $(-\infty, +\infty)$ R= $(-3, +\infty)$ A: y= -3Corta al eje X en 1.04, al Y en -2.6

D= $(-\infty, +\infty)$ R= $(-\infty, 1)$ A: y=1Corta al eje X en 0, al Y en 0

b) 5800 ¿??

b) V(5) = 50.56 pies/seg V(10) = 69.17 pies/seg

-16

Ejercicio 4.1.5 página 309

1) 1/27

2) 1/9

3) Usar $3^23^{y+3} = 3^{y+5}$

4) Usar $2(4^n) = 2(2^{2n})$

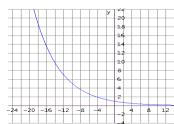
3) a) 0

3c)

5) a) x = 2

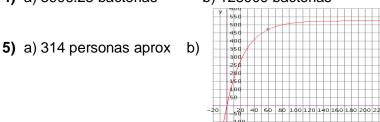
b) x = 24

c) x = 5/18


d) $x_1 = 1$ $x_2 = 4$

2) a) 2700 ¿??

Ejercicio 4.1.6 página 311


1) a) $P(x) = (0.85)^x$ c) 14% b)

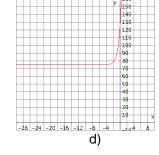
d) No, ya que nunca se cumple que (0.85)^x= 0

4) a) 3906.25 bacterias

b) 128000 bacterias

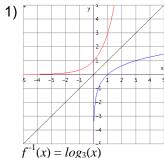
3d) 80 pies×seg.

6) 4.5% trimestralmente.


Aproximadamente en 62 horas

Aproximadamente 4.5

12) a) 87.5°


b) 78.13°

c) 75.78°

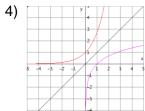
- 8) 5832 mosquitos y en aproximadamente 3.9 días habrá 10000 mosquitos.
- 9) Inicialmente había 4 abejas, en14.365 días habrá 180. 230 abejas.
- **10)** a) Aproximadamente 1.68 mg. b) 20% cada hora.
- 11) En 2010 habrá aproximadamente 1186.2 millones y en 2015 habrá 1310.95 millones. Hubo mil millones aproximadamente en el año 2001.

Ejercicio 4.2.2 página 319

D: $(0, \infty)$ R: $(-\infty, \infty)$

Cero en x = 1

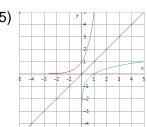
 $f^{-1}(x) = log_{(\frac{1}{2})}(x)$


D: $(0, \infty)$ R: $(-\infty, \infty)$ Cero en x = 1

3)

 $f^{-1}(x) = log(x)$

D: $(0, \infty)$ R: $(-\infty, \infty)$


Cero en x = 1

 $f^{-1}(x) = \ln(x)$ D: $(0, \infty)$ R:

 $(-\infty, \infty)$

Cero en x = 1

 $f^{-1}(x) = \log_5(x)$

 $D: (0, \infty)$

R: $(-\infty, \infty)$

Cero en x = 1

Ejercicio 4.2.3 página 321

- 1) a) $log_{17}(1) = 0$ b) $10^{-4} = 0.0001$ c) $log_5(1/125) = -3$ d) $log_{36}(216) = \frac{3}{2}$

- e) $7^{-4} = 1/2401$ f) $(\sqrt{2})^2 = 2$ g) $log_3(2187) = 7$ h) $5^6 = 15625$ i) $(\sqrt{7})^{-6} = 1/343$

- **2)** a) 4 b) 3 c) 4 d) 9 e) 6 f) $\frac{7}{4}$ g) 6 h) 2 i) 2 j) $\frac{3}{2}$ k) $\frac{5}{3}$

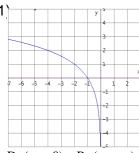
Ejercicio 4.2.4 página 328

- 1) a) $log \sqrt{\frac{1}{x^5}}$ b) $ln \frac{15}{p^3}$ c) $log \frac{2x^3}{x-1}$ d) $log \frac{5\sqrt{y+1}}{(y-1)^3}$ e) $log_3 \sqrt[4]{(y^3+1)(y^2+1)^3}$ f) $log \frac{5\sqrt{w}}{(w-1)^2}$ g) $log \frac{9y^3}{(y+2)^2}$ h) $log \frac{2x^3}{x-3}$ i) $log \frac{2x^3}{(y-1)^3}$ j) $log \frac{1}{5(x+2)^2}$

- 2) a) $3log(x) + \frac{1}{2}log(y)$ b) $\frac{3}{2}log(x) + \frac{5}{2}log(y)$ c) $5log_b(x) 10log_b(y)$ d) $15log_b(w) + 5log_b(z)$
- e) 3ln(x) + 2ln(x) 6ln(b) f) $5log_b(z) + 10log_b(t)$ g) $15log_b(x) 5log_b(y)$

- h) $\frac{1}{3}log_a(x+1) log_a(x-2) 5log_a(x+2)$ i) $log_a(x) + \frac{1}{2}log_a(x^2+3)$ j) $2\sqrt{1-x}ln(x)$

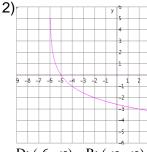
- 3) a) 1.77
- b) 0.712


- c) 1.32 d) 5.007 e) 4.25 f) 7.24 g) 4.31

- h) -5.79
- i) -12.39
- j) 1.59

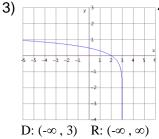
- 4) a) x = 15 b) x = 8 c) $x = \frac{1}{3}$ d) x = 41/9 e) w = 8 f) x = 9 g) x = 212 h) x = 67 i) x = 4 j) $x = \frac{1}{2}$, $x_2 = 4.5$ k) x = 3.12 l) x = 3.6

- m) x = 0.058
- n) $x_1 = 1.09$, $x_2 = 0.69$
- *o*) x = 17.12
- p) x = -0.42
- q) $x = \frac{1}{2}$

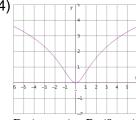

- r) x = 0.306
- s) x = 0.23
- Ejercicio 4.2.5 página 334

D: $(-\infty, 0)$ R: $(-\infty, \infty)$

Eie X: -1


Eie Y: no lo corta

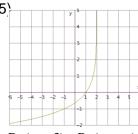
t) x = 0


D: $(-6, \infty)$ R: $(-\infty, \infty)$

Eie X: -5Eie Y: -2.58

Eje X: 2

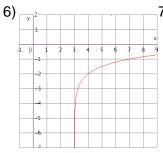
Eje Y: 0.47



D: $(-\infty, \infty)$ R: $(0, \infty)$

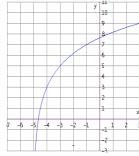
Eje X: 0

Eje Y: 0


5

D: $(-\infty, 3)$ R: $(-\infty, \infty)$

Eje X: 2


Eje Y: 0.47

D: $(3, \infty)$ R: $(-\infty, \infty)$

Eie X: 19

Eje Y: no lo corta

D: $(-5, \infty)$ R: $(-\infty, \infty)$

Eje X: -4.64Eje Y: 7.6

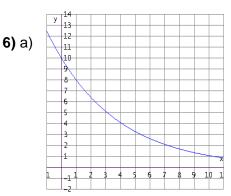
8)

D: $(4, \infty)$ R: $(-\infty, \infty)$

Eie X: 11.38

Eje Y: no lo corta

II) a) $y = log_5(x)$


e) $y = log_4(-x + 2)$

b) y = ln(x - 2)f) y = -log(x + 4) c) y = ln(-x)

d) $y = log_2(x - 3)$

Ejercicio 4.2.6 página 337

- b) 10⁻¹⁰ **1)** a) 120 dB
- **2)** a) $y = 2^{2t}$ b) A los 15 días
- 3) a) 127.7 días b) 575.6 días
- 4) a) 5.6 años b) 5.6 años
- **5)** a) 71% b) 85.5% c) 90%
 - d) 1.6 e) 4.8

c) 13.4251 minutos.

b) 5.12 gramos

- 7) Aproximadamente a las 5:18 pm
- **8)** 2:00 (87.5°), 3:30 (76.562°), 4:00 (75.781°)

9)
$$t = -\frac{L}{R} \ln(\frac{I}{20})$$
 10) a) $t = \frac{\ln(1 + \frac{Ar}{A_0})}{r}$ b) En el año 2021 **11)** 1.94

- **12)** a) grado 2 b) grado 4 c) grado 5 d) 10^7 veces I_0 y 10^9 veces I_0
- **13)** a) 10 b) 30 c) 40 d) 10^{14.1} veces más grande.
- **14)** a) 2.2 b) 5 c) 8.3 **15)** a) $[H^+] = 10^{-3}$ b) $[H^+] = 10^{-4.2}$ c) $[H^+] = 10^{-6.6}$
- **16)** a) m = 5 b) $L = 10^{\frac{6-m}{2.5}} L_0$ **17)** a) $n = 10^{7.7 0.9R}$ b) 12589, 1585 y 200
- **18)** a) R = (log E 1.4)/1.5 b) $E = 10^{14}$ **19)** $t = log_3(N/10^4)$

RESPUESTAS DE LOS REACTIVOS:

1) c	2) c	3) a	4) e	5) d	6) a
7) b	8) c	9) d	10) e	11) c	12) c
13) d	14) c	15) b	16) d	17) b	18) d
19) a	20) b	21) e	22) c	23) a	24) d
25) c	26) a	27) b	28) d	29) d	30) d
31) a	32) c	33) a	34) c	35) a	36) b
37) d	38) b	39) b	40) a	41) b	42) c
43) d	44) a	45) b	46) e	47) c	48) d
49) b	50) i	51) g	52) a	53) f	54) h
55) d	56) c	57) e	58) b		